Journal of Organometallrc Chemlstv, 80 **(1974)** *369-378 0* Elsevler **Sequoia S.A., Lausanne - Prlnted In The Netherlands**

BONDING AND REACTIVITY IN π -ALLYL-METAL COMPOUNDS

H L CLARKE

Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 IXL (Great Bntaln)

(Received May 3rd, 197-I)

Summary

The π -allyl group of π -C₃H₃Co(CO)₃ has two angles of tilt, one of which (from semi-empurical molecular orbital calcuiations) is stabilised principally by the influence of the $C(p_1)$ orbitals of the terminal carbon atoms, which form part of the σ -framework of the π -allyl group, and the other of which is stabilised by a balance between bonding orbital components of the central and terminal carbon atoms. The $Co(CO)$ ₃ moiety has asymmetric bonding, with one CO group more weakly bonded to the metal atom. The asymmetric bonding of the $Co(CO)$ ₃ moiety is primarily caused by the electronic character of the π -allyl group, but is significantly influenced by the magnitude of the τ -tilt angle of the π -allyl group. The relatively high reactivity of π -C₃H₅Co(CO)₃, compared with the reactivity of π -C₃H₃ Fe(CO)₂NO, Co(NO)(CO)₃, or Ni(CO)₄, is explained by the relatively weak bonding of a CO group to the metal atom and a possible explanation of the anomalous relative rates of the reactions of π -C₃H₄RCo(CO)₃ (R = H, 1-CH₃, 2-CH₃, 1-Cl, 2-Cl) with $P(C_6H_5)$, is indicated.

The angles of tilt of the r-ally1 group and the asymmetric bonding of the π -cyclopentadienyl moiety in $[\pi$ -C₃H₃Ni(π -C_sH₅)]₂ are caused by factors similar to those in π -C₃H₅Co(CO)₃.

Introduction

The metal--ally1 group has become of increasing interest because of its unusual intrinsic properties $\{1,\,2\}$ and its importance in organic syntheses $\{2,\,3\}$ **and catalytic reactions [3, 41.**

Considerable progress has recently been made in esperimental aspects **of** m etal—allyl chemistry $[1-12]$, but theoretical treatments of the causes of the tilting of the n-ally1 group **are** limited to overlap integral calculations using Slater orbitals **[13]** and qualitative discussions of the bonding in $(\pi\text{-}C, H, PdCl)$. **[141 and between the n-ally1 group and a metal atom [151. Slater orbit&, how**ever, have been criticised [16].

Quantum chemical calculations on metal—ally compounds should lead to a better understanding of the compounds, and can illuminate details of metalallyl bonding. Semi-empirical molecular orbital (MO) calculations on $(\pi\text{-}C_3H_5)$. M and $(\pi \cdot C_1H_5MCI)_{2}$ (M = Ni, Pd, Pt) [17] and ab initio calculations on $(\pi \cdot C_3H_5)_2Ni$ **[18, 191** have been directed principally towards correlation of calculated eigenvalues with energy levels obtained from photoelectron spectra. Semi-empirical MO calculations on $(2\text{-}CH_3-\pi\text{-}C_3H_4)$, M [20] (M = Ni, Co, Fe, Cr) rationalise the relative stabihty of the Ni compound, and the relatwely **high** reactwity of π -C₁H₃Co(CO)₃ has been explained [21]. The electronic nature of the π -allyl group is **not** certam, but experimental evidence of its electron-donor capacity has been obtained from ¹³C NMR spectra of $(\pi \cdot C_3H_5MX)_2$ (M = Pd, Pt; X = Cl, Br, I) and other π -allyl-metal compounds $[22]$, and from the dipole moments of π -C₁H₄RFe(CO)₂NO [23] (R = H, 2-CH₃, 2-Cl, 2-Br). The semi-empurical calculations on $(\pi\text{-}C_3H_5)$ ² Pd [24], $(\pi\text{-}C_3H_5)$ ² Indeed $(\pi\text{-}C_3H_5)$ MCI)² [17] show the **dual capacity of the a-ally1 group to donate** snd accept electronic chaige, with the electron-donor property generally predominating.

The properties of the π -allyl and other groups in the compounds π -C₃H₅- $Co(CO)$, and π -C₃H₅Ni(π -C₅H₅) have been studied by self-consistent molecular orbital calculations based on the CNDO method. Results of calculations on π -C₁H₃Fe(CO), NO, Co(NO)(CO)₃, N₁(CO)₃ and π -C₃H₄RCo(CO)₃ (R = H, 1-CH₃, $2-CH_1$, 1 Cl , $2-Cl$) are also presented.

Method of calculation and structural parameters

A modified version (251 of the CNDO lnethod [26] has been employed. The computer input parameters have been dlxussed previously [27].

Coordinates of the atcms were calculated from the structural parameters of π -C₃H₃Co(CO)₃ [28], and the structure of π -C₃H₅Ni(π -C₃H₅) was assumed to be similar to that of $[\pi-C_3H_4N_1(\pi-C_5H_5)]_2$ [11] but with equal M-C (2.100 Å) and C-C (1.410 Å) bond lengths in the π -cyclopentadienyl-metal moiety. Dipole moment results (231 show that the nltrosyl group is *tram* to the halogen in π -C₁H₃ RFe(CO), NO (R = 2-Cl, 2-Br) and it is therefore reasonable to assume that the nitrosyl group is c_{13} - to the π -allyl group in π -C₃H₃ Fe(CO), NO, which was assumed to have a structure identical to that of π -C₃H₃Co(CO)₃. Structural **parameters of Ni(CO), [29] were employed. Unknown bond lengths [Co-N(O) =** 1.80 A, N-O = 1.15 A l were estimated from a comparison of known bond lengths of similar compounds [30,31].

Results and discussion

 π -C₃H₃Co(CO), has a distorted tetrahedral structure [32] with OC-M-CO angles of ca. 100°. The π -allyl group is tilted with respect to the Co(CO)₃ moiety [28], and in common with other π -allyl-metal compounds, has two types of tilt angle: the τ angle, which is the angle between the plane of the π -allyl carbon atoms and the plane of the carbonyl carbon atoms, and the \circ angle, which is the angle between the plane of the π -allyl carbon atoms and the plane through the metal atom and the terminal carbon atoms of the π -allyl group (Fig. 1).

Fig. 1. Ligand distribution of τ -C₃H₅Co(CO)₃.

The M⁻C (π -allyl) bond lengths (which determine the ϕ angle) are approximately equal, **with the central** carbon atom slightly nearer to the metal atom.

A. Bonding in the π *-allyI-metal group*

The calculations on π -C₃H₃Co(CO)₃ and π -C₃H₅Ni(π -C₅H₅) show that the most important π -allyI-metal bonding interaction is that between the $M(d_{\kappa})$ orbital and the formally singly occupied molecular orbital, ψ_2 *, which involves the p_s orbitals of the terminal carbon atoms. The central carbon atom is involved in only the bonding (ψ_1) and antibonding (ψ_3) orbitals and therefore has a considerably smaller role than the terminal **carbon** atoms in the n-allyl-metal bonding (Table i).

(*i*) The τ angle of tilt. By varying the τ angle of π -C₃H_sCo(CO)₃ from 0° to 10° , 20° , 36° , 60° , while retaining all other features of the π -allyl-metal and metal-tricarbonyl moieties, the M-C₁ and M-C₁ bond indices** are observed to attain a maximum when τ = 36° (Table 2), which is the experimentally observed angle of tilt. As τ increases the $M(d_{xz})-C_1(p_z)$ bond index decreases, but the M(d_{xx} , d_{xy})-C₁(p ,) bond indices increase and the latter increases more than offset the M(d_{x_2})—C, (p_{z}) decreases except when τ = 60° (Table 4). The very large decrease in the M(d_{xz})—C₁(p₂) bond index from τ = 36° to τ = 60° is not sufficie

BOND INDICES OF π -C₃H₅Co(CO)₃ AND π -C₃H₅N₁(π -C₅H₅)

TABLE 1

***** Huckel orbitals of the π -allyl group are depicted in ref. 33.
***** Bond index, $B_X \gamma$, is defined by the equation $B_X \gamma = \sum_{i=1}^{n}$ ** Bond mdex, $B_X\gamma$, is defined by the equation $B_X\gamma =$ λ on X λ on Y i occ.

is the coefficient of the atomic orbital λ of the occupied molecular orbital i.

VARIATIONS OF M-C(n-allyl) BOND INDICES WITH 7 AND 3 IN n-C₂H₅ Co(CO)³

ly compensated by the large increases in the M(d_{xx} , d_{xy})–C₁(p_y) bond indices. The most important influences on the bonding in π -C₃H₃Co(CO)₃ as τ increases are therefore the increasing participation of the p_x orbitals of the terminal carbon atoms and the metal d_{xx} orbitals. The results of the calculations indicate (Table 4) that the r angle of 36° of π -C₃H_sCo(CO)₃ is caused by the increased participation of the $C_1(p_y)$ and $M(d_{xy})$ orbitals which offset the diminished participation of the $C_1(p_+)$ orbitals.

Variation of the τ angle of π -C₃H₅Ni(π -C₅H₅) through 0°, 18°, 30°, 40° (Table 3) yields a maximum M-C₁ bond index when $\tau = 18^{\circ}$, the experimentally **observed** τ **tilt angle. The** M/d_{r} **,) orbital has an insignificant effect on the** π -allyl—metal bonding **(Table 5). The increase in the M(d,,)—C,(p,)** bond inde: from τ = 0° to τ = 18° is greater than the decrease in the M(d_{xz})—C₁(p_z) bond in. dex, but the accelerating decrease in the M(d_{xz})–C₁(p_z) bonding is not matched by a similar increase in the $M(d_r,)-C_1(p_s)$ bonding over the range $\tau = 18^\circ$ to $\tau = 40^{\circ}$.

The results of the calculations therefore show that the 7 tilting of the ~-ally1 group, **like the bendmg of ring substituents out of the rmg plane [34],** is a consequence, at least in part, of interaction between the metal orbitals and **part** of the o-framework of the ligand.

(ii) The ϕ *angle of tilt.* The calculated bond indices of π -C₃H₅Co(CO)₃ and π -C₃H₅Ni(π -C₅H₅) (Table 1) show that the central carbon atom is considerably **more weakly bonded to the metal atom than the terminal carbon atoms, due principally to the non-involvement of the central carbon atom in the** ψ_2 **molecular orbital. The hl-CI, bond length,** however, is **shorter than the M-C, and** $M-C_3$ bond lengths.

TABLE 3

TABLE 2

τ (°)	$M(d_{v_1}) - C_1(p_{v_2})$	$M(d_{\nu\nu})$ - $C_1(p_{\nu})$	$M(d_{xy})-C_1(p_{z})$	$M(d_{xy})$ - $C_1(p_y)$
- 0	0.3403	0.0005	0.0041	0.0001
10	0.3362	0 0062	0.01.19	0.0010
20	02993	0.0303	0.0337	0.0055
36	0.2009	0.0879	0.0559	0.0319
60	0.0581	0.1363	0.0156	0.1359

TABLE 4 VARIATIONS OF Med \overline{d} , \overline{r} , $(n, p, 1)$ bond indices with \overline{r} in \overline{n} -C₃H_zCo(CO)₃

If the terminal carbon atoms of π -C₃H₃Co(CO), are in the xz-plane and ϕ = 90°, the M-C₂ bond index is considerably greater than that when ϕ = 105°. whereas the $M-C_1$ bond index decreases (Table 2). If the terminal carbon atoms are fixed in their known positions and ϕ is varied through 105° and 150° the M-C₂ bond index decreases, whereas the M-C₁ bond index is at a maximum when $\phi = 105^{\circ}$. The experimental values of ϕ in π -C₃H₅Co(CO)₃ and π -C₃H₅- $Ni(\pi-C, H_5)$ are 105° and 103.16°, respectively. When the $M-C_2$ bond index is **relatively** high and the M-C, bond indes relatively low an imbalance is created in the contributions of the central and terminal carbon atoms to the bonding orbital, ψ_1 . The C₁ and C₂ contributions to the bonding of the ψ_1 orbital to the metal atom depend on the magnitude of the ϕ angle. When the ϕ angle is such that C₂ contributes more to the bonding of the ψ_1 orbital to the metal atom than C_1 by a factor of ca. $\sqrt{2}$, then ψ_1 -M bonding is balanced and ϕ is ca. 105° for both compounds. The ϕ angle of 105° can readily be shown to give an M-C₂. bond length of ca. 2.0 Å given the M–C, (2.10 Å) and C–C (1.41 Å) bond lengths and the $C-C-C(120^{\circ})$ bond angle.

B. Effects of the x-ally1 group

TABLE 5

The effects of the π -ally! group on other groups bonded to the metal atom are **caused by the** electronic nature, the tilting, and in some cases 17, 81, the steric effect of the π -allyl group.

(i) Asymmetric bonding. The bond indices of the M-C(O) groups of π -C₃H₃Co(CO), are given in Table 6. The carbonyl group *cis* to the π -allyl group (Fig. 1) is more weakly bonded to the metal atom than the *tram* **carbonyl** groups **because** of two possible factors: the electronic nature and the tilt (or position) of the π -allyl group.

The n-ally1 group causes the same CO group to be more weakly bonded to the metal atom in the r-angle range 0° to 60° (Table 6). When $\tau = 0^{\circ}$ the π -allyl group is *trans* to the labile CO group (Fig. 2). The cause of the lability of the

$M - C_1(0)$	$M-C2(O)$	$M - C3(O)$	
0.5175	0.4668	0 5175	
0.5181	04522	0.5184	
0.5210	0.4355	05210	
0.5268	0.4069	0.5268	
0.5397	0.3629	0.5397	
05363	03719	0.5363	
			.

TtBLE 6 VARIATIONS OF M-C(O) BOND INDICES WITH 7 IN π **-C₃H**₅Co(CO)3

unique carbonyl group is the electron donation by the ψ_2 orbital to the metal d_{c} , orbital which has the most significant influence (of the d orbitals) on the bonding of the trans-CO groups, but is almost uninvolved m the bonding of the cts-CO group. Even when the π -allyl group is *trans* to the unique CO group $(\tau = 0^{\circ})$ there is substantial donation by the ψ_2 orbital to the M(d,,) orbital and consequently to the two remaining $M-C(O)$ groups. The primary cause of the weak bonding of one CO group is therefore the electronic nature of the π -allyl group.

The effect of the tilting of the π -allyl group on the asymmetry of the $M(CO)$ ₃ bonding can be measured by the variations in bond indices with the τ angle of tilt (Table 6). The asymmetry of the $M(CO)$, group increases with increasing τ , the *cis-N*-C(O) bond becoming weaker and the *trans-N*-C(O) bonds becoming stronger. The asymmetry of the $M(CO)$, group, caused primarily by the electronic effect of the π allyl group, is approximately doubled by the 36° *r* angle of tilt of the π -allyi group in π -C₃H₃Co(CO)₃.

Asymmetric bonding has been observed in the π -cyclopentadienyl group of $[\pi\text{-}C_1H_1Ni(\pi\text{-}C_5H_5)]$, [11] in which the π -cyclopentadienyl group has a π -allyl-type grouping and a C-C bond which has more double bond character than the other C-C bonds in the moiety. The calculations on π -C₃H₅Ni(π -C₅H₅), with equal C-C bond lengths in the π -C₃H₅ moiety, show that the M-C and $C-C$ bond indices are not equal (Table 7), primarily because of the asymmetry of the electronic field of the metal atom caused by the donation of the π -allyl $C(p_1)$ orbitals to the metal d_{r_1} orbital, and because of the geometrical distribution of the carbon atoms of the π -cyclopentadienyl group. The contribution to the asymmetric Ni- $(\pi$ -C₅H₅) bonding of the 18[°] tilting of the π -C₃H₅ group is

Fig. 2. Distribution of the π -C₃H₃-Co group when τ = 36^{*} (A) and τ = 0[°] (B).

٢
÷ ٦

VARIATIONS OF M-C(#-C6115) AND C-C(#-C6115) BOND INDICES WITH 7 IN #-C (H5N(#-C6115)

TABLE 8

CARBONYL FREQUENCIES, FORCE CONSTANTS, REACTION MICHANISMS AND RATE CONSTANTS OF T-C311<Co(CO)3, T-C3H5 Fe(CO)2NO, CO(NO)(CO)3 AND M(CO)3, IIN REACTION WITH P(C_{(H5)1}]

	$\ddot{}$	$\ddot{}$			
Compound	1 ⁻ Γ ⁻¹)	λ^{-1} and Λ^{-1})	Reaction mechanism Rate constant		ن قا
#-C ₃ N5Co(CO) ₃ #-C ₃ N5Fc(CO) ₂ NO Co(NO)(CO)3 li(CO)4	$N(CQ)_{1}(C^{18}O)$ 2031, 1984 ^b 2110.2042 ^b $2008, 2000$ ^d 2116, 2046	ន 1723 17.30 16.71	JRSOCHILIVE Msociative Associative SOCIATIVE	1.14 X 10^{-2} scc ^{-1 d} 1.00 X 10^{-1} i m ⁻¹ scc ⁻¹ c 1.10 X 10^{-1} i m ⁻¹ scc ⁻¹ f 2.03 < 10 ⁻² scc ^{-1 d}	S ≋

a Ref. 6. cyclohexane solution. ¹ Toluene solution. C n-Hexane solution. ^{*d*} Ether solution at 25', [L] = 0 063 M, [S] = 0.072 M \ Toluene solution at 50',
[L] = 1.0 mol 1⁻¹ a Toluene solution at 25'', [L] = 0.993

approximately equal to that due solely to the electronic effect of the π -allyl group-

(ii) Reactivity of π -C₃H₅Co(CO)₃. π -C₃H₅Co(CO)₃ reacts rapidly with $P(C_6H_5)$ ₃ in a reaction which is first-order in concentration of substrate and **zero-order** in concentratron of ligand when the llgand concentration is greater than 0.06 AI [35], **and** the kinetic data Indicate that the **reaction is dissociative.** The reaction of π -C₃H₃ Fe(CO)₂ NO with P(C₀H₅)₃ is first-order in concentration **of substrate and first-order in concentition of** ligand [36], mdicating an associative reaction mechanism, and the reaction is considerably slower than that of π -C₃H₃Co(CO), (Table 8). The results suggest that π -C₃H₃Co(CO), reacts by breakage of a $M-C(O)$ bond in the rate-determining step, whereas the reaction of π -C, H_s Fe(CO), NO is bimolecular and does not proceed initially by bond breakage. $Co(NO)(CO)$, reacts with $P(C_6H_5)$, with predominantly second**order kinetics and a smaJJ fnst-order contnbution [37, 381, while Ni(CO), reacts by dissociation [39].** h!etaJ **carbonyl compounds can be predisposed to** first-order kinetics by the lability of one or more M-C(O) bonds, while relatively **strong hi-C(O) bonds can be expected to be conducive to non-dissociative reactron paths.**

The *infrared carbonst* stretching frequencies $[\nu(CO)]$ of the senes π -C₃H₅ - $Co(CO)$, π -C₃H, Fe(CO), NO, Co(NO)(CO), and Ni(CO), are shown in Table 8. π -C₃H_sCo(CO)₃ occupies an apparently anomalous position among the Cotton-Kraihanzel [40] carbonyl force constants $\kappa(C_0)$], because $\kappa(C_0)$ of π -C₃H₅-Co(CO), emplncally suggesks that **the hl-C(0) bonds are relatweiy strong.**

The calculated $M-C(O)$ bond indices for the series of compounds are shown in Table 9. The average M-CO bond order of π -C₃H₅Co(CO), is considerably lower than those of π -C₃H₃Fe(CO)₂NO and Co(NO)(CO)₃ but is nearly **equal to that of N₁(CO)₁, and a carbonyl ligand should most easily dissociate** from π -C₃H₂Co(CO)₃ and Ni(CO)₄. The results therefore indicate that the anomalously high reactivity of π -C₃H₃Co(CO)₁ is caused by the combined electronic effect and tilting of the π -allyl group.

(iii) Reactivity of π *-C,FI,RCo(CO), (R = H, 1-CH, 1.-Cl, 2-CH₃, 2-Cl) The* relative rates of reactions of the compounds π -C₃H₄RCo(CO)₃ (R = H, 1-CH₃, 1-Cl. 2-CH₃, 2-Cl) with P(C_nH₃)₃ are in order 1-Cl \lt 1-CH₃ \lt H \lt 2-CH₃ \lt 2-Cl [35], whereas the compounds π -C₃H₃RFe(CO), NO react with the relative rates $1\text{-}CH_1$, $2\text{-}CH_1$ < H < 1.Cl, $2\text{-}Cl$ [41], and the M-C(O) groups *trans* to the π -allyl ligand in the iron compound therefore experience the normal substituent effects. The essential difference between the two sets of compounds is the occupatron of the NO site In one compound by a labile CO group in the other. The **unusual kmetic substituent** effects in the cobalt compounds must therefore be

TABLE 9

M-C(O) AND C-O BOND INDICES OF π **-C₃H₅Co(CO)₃,** π **-C₃H₅Fe(CO)₂NO, Co(NO)(CO)₃ and** hl(CO)l

Compound	$M-C(O)(ave.)$	$C-O$ (ave.)	
π -C ₃ H ₅ Co(CO) ₃	0.4868	2.4467	
π -C ₃ H ₅ Fe(CO) ₂ NO	0.5689	2.4375	
CO(NO)(CO)	05473	24967	
$N_l(CO)_d$	0.4810	2.5210	

\sim 0.07 mm σ or both primary color to strate every the strategies of σ or μ = etc.				
R	$M-C(O)$	c - σ		
н	0.5268 0 4069 0 5268	2.4541 2.4318 2.4541		
$1 - CH_1$	0.5072 0.4068 0.5079	2.4499 2.4253 2.4500		
$1-C1$	0.4987 0.4101 0.5294	2.4579 2.4409 2.4604		
2 -CH ₂	0.5268 0.4020 0.5268	2.4524 2.4292 2.4524		
$2-C1$	0.5279 0.4014 0.5279	2.4628 2.4392 2.4628		

TABLE 10 $M=$ C(O) AND C $-$ O BOND INDICES OF π -C₃H₄RCo(CO)₃ (R = H. l-CH₃, l-Cl, 2-CH₃, 2-Cl)

caused by the substituent effects on the unique, labile $M-C(O)$ group. Calculations on π -C₃H₃RCo(CO)₃ (R = H, 1-CH₃, 1-Cl, 2-CH₃, 2-Cl) show that the unique $M-C(O)$ bond indices correlate with the kinetic rate constants, although the normal substituent effects are reflected in the other $M-C(O)$ bond indices (Table 10).

Acknowledgement

The author wishes to thank the Ramsay Memorial Fellowships Trust, University College, London, for the award of a Fellowship.

References

- 1 **L.A. Federov. Russ. Chem Revs_. 39 (1970) 655.**
- 2 **h1.l Lobach. B.D. Brrb~tslu~ and V.A. Kormet. Russ. Chem. Rels.. 36 (1967) 476.**
- 3 R. Baher. Chem. Rc~s.. 73 (1973) 487.
- 4 H. Bonnemann. Anger. Chem. Inl. Ed. Engl . 12 (1973) 964.
- 5 H.L. Clarhe and N.J. **Fltzpalnch. J. Otganomeul. Chem.. 66 (1971) 119.**
- 6 **H.L.** Clvhe and N.J. Fllzpalnck. J. O~anomelal. Chem.. **13 (1972) 405**
- 7 H.L. Clarke and N J. Fitzpatnck, Inorg. Nucl. Chem. Lett , 8 (1973) 75.
- 8 J.W. Fallar. C.-C. Chen. h1.J. hlattlna and A. JacubowsL. J. Organomelal. Chem.. 52 (1973) 361.
- 9 **hl. Oslmger** and J. Porvel:. Can. J. Chem.. 51 (1973) 27-l.
- 10 R.P. Hushes and J. PoweU. J tmer. Chem. Sot.. 94 (1972) 7723
- 11 A.E. **Smllb. Inorg. Chem.. 11 (1972) 165.**
- 12 **D.C.** Andrervs and G. Davrdson. J. Organomeral. **Chem.. 55 (1973) 383.**
- 13 **S.F.A. Kettle and** R. hlzon. J. Orpanomelal. 5 (1966) 573.
- l-l K. C. **9facLean. P. Coszee and C.\V Hllbers.** Reel. Trab. Chum. **Pabs-Bas. 85 (1966) 1077.**
- 15 **P.\V.N.hl. van Lreursrn and A.P. Praal. J. Orwnomelal. Chem.. 21 (1970) 501.**
- 16 D A. Brown and N.J. Fitzpatrick, J. Chem. Soc. A. (1967) 316.
- 17 **D.A. Brown and A. Owens. Inorg. Chim. Acta. 5 (1971) 675.**
- 18 **A. Velllard. Chem.** Comm . **(1969) 1022 and I-127.**
- 19 M.-M. Rohmer and A Veillard, Chem Comm , (1973) 250.
- 20 G. de Broucbire. Theor. Chum. Acra. 19 (1970) 310.
- 21 D.A. Brown, H.L. Clarke and N J Fitzpatrick, J. Organometal Chem , 47 (1973) C11.
- 22 **D.G. Cooper. R.P. Hughes and J. Powell. J. Amer. Chem. Sot.. Q-l (1972) 9311.**
- 2'3 **S. Sor~lso. G** Cardaa and S hl. hlurgla. 2. **Nrtrurforsch.** B. **27 (1972) 1315.**
- 24 **I.H. Hlllwr and R.hl. Canadlne. Dsc. Famd Sot.. -17 (1969) 27.**
- 25 **D.R. 4rmsLrong. P.G Perknsand J J P. Stewart. J. Chem. Sot. A. (1971) 3674.**
- '26 J.9. Pople. D P. Sentry **and G.4 !&gal. J. Chem.** Phvs.. 43 (1965) 5129
- 27 K-A. Levlson and P.C. Perkms. **Tbeor. Cbm. Acta. 14 (1969) 206.**
- 28 **R. Selp. Acla Chem. Stand.. 26 (1972) 1966.**
- 29 **J LadeU. B Post and I Fankuchen. Acla Crvsr.. 5 (1952) 795.**
- 30 N.G. Connelly, Inorg. Ch**um. Acta Revs., 6 (1972) 47.**
- 31 **B.F.G. Jobwon** and **J.A. hlcCleverty. Progr. Inor% Cbem.. 7 (1966) 277.**
- 32 **H.L. Clarhe and N.J. Fluparrlck. inor& Nucl. Chem Lelr.. 8 (1973) 81**
- 33 **1l.L.H.** Green and P.L.I. Nagv. Aown. Organomeral. **Chem.. 2 (136-1) 325.**
- 34 S.F.A. Kettle, Inorg Chun. Acta, 1 (1967) 303
- 35 R.F. Heck, J. Amer. Chem. Soc., 85 (1963) 655.
- 36 G. Cardaci and S.M. Murgia, J. Organometal. Chem., 25 (1970) 483.
- 37 G. Cardaci, A. Foffani, G diStefano and G Innorta, Inorg. Chim. Acta, I (1967) 340
- 38 E.M. Thorsteinson and F. Basolo, J. Amer. Chem. Soc., 88 (1966) 3929.
- 39 J.P. Day, F. Basolo and R.G. Pearson, J. Amer. Chem. Soc., 90 (1968) 6927.
- 40 F.A. Cotton and C.S. Kraihanzel, J. Amer. Chem. Soc., 84 (1962) 4432.
- 41 H.L. Clarke, unpublished observations.